SOFIA Begins Fourth Year of Observations Targeting Asteroids and More

NASA’s “flying” telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA) aboard a highly modified Boeing 747SP jetliner, began its fourth series of science flights on Feb. 3, 2016.

This operational period, known as “Cycle 4,” is a one-year-long observing period in which SOFIA is scheduled for 106 flights between now and the end of January 2017.

NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA)
NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) takes off from Palmdale, California at sunset. SOFIA is a partnership of NASA and the German Aerospace Center (DLR).
Credits: NASA / Greg Perryman

“The Cycle 4 program will make more than 550 hours of observations,” said Pamela Marcum, NASA’s SOFIA Project Scientist. “We’ll be studying objects spanning the full gamut of astronomical topics including planets, moons, asteroids and comets in our solar system; star and planet formation; extrasolar planets and the evolution of planetary systems; the interstellar medium and interstellar chemistry; the nucleus of the Milky Way galaxy, and nearby normal and active galaxies.”

SOFIA’s instruments observe infrared energy – one part of the electromagnetic spectrum, which includes visible light, x-rays, radio waves and others. Many objects in space, for example newborn stars, emit almost all their energy at infrared wavelengths and are undetectable when observed in ordinary visible light. In other cases, clouds of gas and dust in space block visible light objects but allow infrared energy to reach Earth. In both situations, the celestial objects of interest can only be studied using infrared facilities like SOFIA.

“During the February third flight, the target objects ranged from a young planetary system around the naked-eye star Vega, only 25 light years from us, to an infant star 1,500 light years away in the Orion star forming region,” said Erick Young, SOFIA’s Science Mission Operations Director, describing the science conducted on Cycle 4’s inaugural flight. “We also observed a supermassive black hole hidden behind dense dust clouds in the center of a galaxy 170 million light years away.”

Scientists from the University of Georgia, University of Arizona, University of Texas at San Antonio, and the Space Telescope Science Institute in Baltimore, plus their collaborators from institutions in the United States and Europe, obtained data using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) mounted on SOFIA’s telescope for imaging and spectroscopic observations during the flight.

Later in Cycle 4, the SOFIA observatory is scheduled to deploy to the Southern Hemisphere for seven weeks in June and July 2016, with 24 science flights planned from a base at Christchurch, New Zealand. There, scientists will have the opportunity to observe areas of interest such as the Galactic Center and other parts of the Milky Way that are not visible or difficult to observe from the Northern Hemisphere.

The far-infrared High-resolution Airborne Wideband Camera-plus (HAWC+) will be added to SOFIA’s suite of seven cameras, spectrometers, and high-speed photometers during the latter part of Cycle 4. HAWC+’s optics, state-of-the-art detector arrays, and upgradability will permit a broad range of important astrophysical investigations, including the unique and powerful capability of mapping magnetic fields in molecular clouds.

SOFIA is a joint project of NASA and the German Aerospace Center (DLR). NASA’s Ames Research Center in Moffett Field, California, manages the SOFIA program. The aircraft is based at NASA’s Armstrong Flight Research Center’s facility in Palmdale, California. NASA Ames manages the SOFIA science and mission operations in cooperation with the Universities Space Research Association (USRA) headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart.

National Aeronautics and Space Administration
Nicholas A. Veronico
SOFIA Science Center, NASA Ames Research Center, Moffett Field, Calif.
Feb. 22, 2016
Editor: Yvonne Gibbs

Small Asteroid to Pass Close to Earth March 5, 2016

A small asteroid that two years ago flew past Earth at a comfortable distance of about 1.3 million miles (2 million kilometers) will safely fly by our planet again in a few weeks, though this time it may be much closer.

During the upcoming March 5 flyby, asteroid 2013 TX68 could fly past Earth as far out as 9 million miles (14 million kilometers) or as close as 11,000 miles (17,000 kilometers). The variation in possible closest approach distances is due to the wide range of possible trajectories for this object, since it was tracked for only a short time after discovery.

Scientists at NASA’s Center for NEO Studies (CNEOS) at the Jet Propulsion Laboratory in Pasadena, California, have determined there is no possibility that this object could impact Earth during the flyby next month. But they have identified an extremely remote chance that this small asteroid could impact on Sep. 28, 2017, with odds of no more than 1-in-250-million. Flybys in 2046 and 2097 have an even lower probability of impact.

“The possibilities of collision on any of the three future flyby dates are far too small to be of any real concern,” said Paul Chodas, manager of CNEOS. “I fully expect any future observations to reduce the probability even more.”

Asteroid 2013 TX68 is estimated to be about 100 feet (30 meters) in diameter. By comparison, the asteroid that broke up in the atmosphere over Chelyabinsk, Russia, three years ago was approximately 65 feet (20 meters) wide. If an asteroid the size of 2013 TX68 were to enter Earth’s atmosphere, it would likely produce an air burst with about twice the energy of the Chelyabinsk event.

The asteroid was discovered by the NASA-funded Catalina Sky Survey on Oct. 6, 2013, as it approached Earth on the nighttime side. After three days of tracking, the asteroid passed into the daytime sky and could no longer be observed. Because it was not tracked for very long, scientists cannot predict its precise orbit around the sun, but they do know that it cannot impact Earth during its flyby next month.

“This asteroid’s orbit is quite uncertain, and it will be hard to predict where to look for it,” said Chodas. “There is a chance that the asteroid will be picked up by our asteroid search telescopes when it safely flies past us next month, providing us with data to more precisely define its orbit around the sun.”
For regular updates on passing asteroids, NASA has a list of the next five close approaches to Earth; it links to the CNEOS website with a complete list of recent and upcoming close approaches, as well as all other data on the orbits of known NEOs, so scientists and members of the media and public can track information on known objects.

National Aeronautics and Space Administration
DC Agle
Jet Propulsion Laboratory, Pasadena, California
Editor: Tony Greicius